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Abstract
Two extreme pictures of electron–phonon interactions in nanoscale conductors
are compared: one in which the vibrations are treated as independent Einstein
atomic oscillators, and one in which electrons are allowed to couple to the
full, extended phonon modes of the conductor. It is shown that, under a broad
range of conditions, the full-mode picture and the Einstein picture produce
essentially the same net power at any given atom in the nanojunction. The
two pictures begin to differ significantly in the limit of low lattice temperature
and low applied voltages, where electron–phonon scattering is controlled by
the detailed phonon energy spectrum. As an illustration of the behaviour in
this limit, we study the competition between trapped vibrational modes and
extended modes in shaping the inelastic current–voltage characteristics of one-
dimensional atomic wires.

1. Introduction

In recent years there has been a growing recognition of the fact that the passage of electrical
current through a nanoscale conductor can have a significant effect on the mechanical properties
of the conductor. One such effect is current-induced forces and their influence on the structure
and stability of the nanoconductor. In this paper, we are concerned with the other principal
current-induced mechanical effect: inelastic electron–phonon scattering in atomic wires and
the resultant local power dissipation [1].

Early experimental evidence for local heating in nanowires came from observations of
the voltage dependence of two-level conductance fluctuations and hysteresis at conductance
steps during the pull-off or compression of an atomic-scale metallic contact [2, 3]. The
possibility that even a defect-free,ballistic nanoscale conductor could undergo substantial local
heating in the presence of current immediately raises the question of how such local power
dissipation might affect the stability of these elemental conductors. There has indeed been
growing evidence for current-induced fracture or structural modification of atomic wires and
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Figure 1. The set-up for the description of electron–phonon interactions and local power dissipation
in nanoscale conductors, as considered in the paper.

point-contacts [4–10]. The second principal experimental question to which electron–phonon
interactions are relevant is inelastic current–voltage spectroscopy of atomic wires [11, 12] and
molecular junctions [13, 14].

Let us now turn to one widely used notional set-up for the description of inelastic electron–
phonon scattering and power dissipation in nanojunctions, depicted in figure 1. We picture a
general nanoscale junction between two electrodes under an applied bias, W . The bias results
in the flow of electrical current. In its simplest form, the argument then runs through two
steps. First, the junction is characterized by a set of vibrational modes. Inelastic interactions
between the current-carrying electrons and these modes result in net power dissipation into the
junction, designated as ‘power in’ in figure 1. Second, the vibrational modes of the junction
are coupled to the adjoining electrodes. This enables heat flow out of the junction, designated
as ‘power out’ in the figure. Balancing power in against power out enables one to obtain an
estimate of the steady-state temperature profile, T , in the junction in the presence of current.
This approach has been applied to current-induced heating of isolated defects [15–17]. It
has also been used to model local heating of current-carrying nanoscale metallic contacts and
nanowires [18, 19]. Recently, it has been applied to molecular junctions [20].

Power in, in figure 1, can be calculated by first-order perturbation theory of the interaction
between current-carrying electrons and vibrations in the junction. In the past, this calculation
has been implemented in two different ways. In simple treatments, the vibrations have been
described as independent atomic Einstein oscillators [18, 19]. In more elaborate treatments,
the electrons have been coupled to the full phonon modes of the junction [20, 21]. The purpose
of this paper is to examine the similarities and differences between these two pictures. We
demonstrate that, in the limit |eW | � kT , |eW | � h̄ω where ω is a typical vibrational
frequency, the two pictures lead to essentially identical values for the net power dissipated by
the current at a given atom in the nanojunction. The equivalence of the two pictures is lost
away from the above limits. If |eW | is comparable to h̄ω, then electron–phonon interactions
are controlled by the detailed properties of the individual full phonon modes of the junction.
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As an illustration, we study the competition between trapped modes and extended modes in
shaping the inelastic current–voltage curves of defective low-dimensional atomic wires. We
show that, in short wires, bound phonons can dominate the inelastic current–voltage features.
As the wire length increases, however, and phonon and electron momentum become better and
better quantum numbers, the inelastic current–voltage characteristics become dominated by
scattering off extended plane-wave phonons with a wavevector set by the requirement of total
momentum conservation.

2. Formalism

2.1. The general set-up

We begin by outlining the perturbative electron–phonon scattering calculation that underlies
the calculation of power dissipation, both into full phonon modes and into Einstein oscillators.
The formalism follows [19, 21] closely. In those papers, the formalism was developed with
explicit reference to a simple tight-binding electronic model. We will, later on, use such
simple models to illustrate our analytical derivations by numerical calculations. However,
the formalism itself will first be presented in a general way, independent of the underlying
electronic model.

To apply perturbation theory to the electron–phonon interaction, we must first define
a reference unperturbed state for the electron–phonon system. In this unperturbed state,
the electrons and phonons are treated as two independent, decoupled systems. To define
the unperturbed state of the electron subsystem, we imagine that all ions are frozen in their
equilibrium positions. The electron eigenstates for the electrode–junction–electrode system in
figure 1 can, quite generally, be divided into two classes [22]. The states in one class, {|ψ1〉}
with energies {E1}, consist of a right-travelling wave, incident in the left electrode upon the
junction, then partially reflected back into the left electrode and partially transmitted into the
right electrode, and conversely for the other class, {|ψ2〉} with energies {E2}. To set up current
flow we imagine that the battery in figure 1 populates the states {|ψ1〉} and {|ψ2〉} with Fermi–
Dirac occupation functions f1(E) and f2(E) = f1(E + eW ), with electrochemical potentials
µ1 andµ2 = µ1−eW , respectively. The electronic structure of the current-carrying electrode–
junction–electrode system in the absence of electron–phonon interactions is thus described by
the density operator

ρ(W ) =
∫

f1(E)D1(E) dE +
∫

f2(E)D2(E) dE (1)

where

D1(E) =
∑

1

|ψ1〉δ(E − E1)〈ψ1|, D2(E) =
∑

2

|ψ2〉δ(E − E2)〈ψ2| (2)

are the partial density of states operators associated with the two classes of electron states.
D1(E) and D2(E), and the total density of states operator D(E) = D1(E) + D2(E), can,
ultimately, be expressed in terms of the Green function for the electrode–junction–electrode
system [19, 21, 22].

The unperturbed atomic vibrations are described by a phonon Hamiltonian of the form

Hz =
∑
n,ν

p2
nν/2Mn +

∑
n,ν,m,µ

unνKnνmµumµ/2. (3)

Here, unν and pnν are the displacement and the momentum, respectively, of atom n in direction
ν. Mn is the mass of the atom. The real symmetric matrix K with elements Knνmµ is the
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dynamical response matrix, defined as

Knνmµ = −∂Fnν/∂umµ, (4)

where Fn = (Fnx , Fny, Fnz) is the force on atom n that results from a displacement of atom
m by an amount um = (umx, umy, umz) [21]. In this paper, we ignore any possible effect of
the current on K. This assumption may need to be revised in the limit of high voltages, where
current-induced corrections to interatomic forces can be significant [23–25].

The electron and phonon subsystems are now coupled by an appropriate interaction term,
of the general form [19, 21]

Vez =
∑
n,ν

Vnνunν (5)

where Vnν = V †
nν is an operator acting on the electron states. Explicit forms for Vnν will be

considered in the numerical calculations later on.

2.2. Power into full phonon modes

Once we have the dynamical response matrix K for the nanojunction, the phonon modes of
the junction may be obtained as follows. If the masses of the junction atoms are not all the
same, first it is necessary to make the transformations

p̃nν = pnν
/√

Mn, ũnν = unν

√
Mn (6)

K̃nνmµ = Knνmµ
/√

Mn Mm (7)

Ṽnν = Vnν
/√

Mn (8)

in terms of which equations (3) and (5) become

Hz =
∑
n,ν

p̃2
nν/2 +

∑
n,ν,m,µ

ũnν K̃nνmµũmµ/2 (9)

Vez =
∑
n,ν

Ṽnν ũnν. (10)

The phonons are quantized by imposing

[ũmµ, p̃nν] = ih̄δmnδµν. (11)

In what follows it will occasionally be convenient to employ a single index, i , instead of the
double index nν for the atomic degrees of freedom, in such a way that there is a unique value
of i for every nν. Let now M j i be component i of eigenvector j , normalized to unity, of the
matrix K̃ in equation (7), so that∑

i

K̃liM j i = K̃ jM jl (12)

where K̃ j is the eigenvalue corresponding to eigenvector j . The matrix M is unitary. In what
follows, index j will always be used to label phonon modes. Index j has the same number of
values as the composite index i ≡ nν, used to label the individual atomic degrees of freedom.
Then M j i gives the normalized amplitude of phonon mode j at atom n, in direction ν. The
angular frequency, ω j , of phonon mode j is given by

ω2
j = K̃ j . (13)
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We now introduce the phonon creation and annihilation operators

A†
j =

∑
i

(√
ω j/2h̄M j i ũi − i

√
1/2h̄ω jM∗

j i p̃i

)
(14)

A j =
∑

i

(√
ω j/2h̄M∗

j i ũi + i
√

1/2h̄ω jM j i p̃i

)
(15)

which satisfy [A j , A j ′] = [A†
j , A†

j ′] = 0 and [A j , A†
j ′] = δ j j ′. The eigenvectors of K̃, and

hence the matrix M, may always be chosen to be pure real, but for the moment we have
allowed M to be a complex unitary matrix, for generality. Equations (14) and (15) may be
inverted to give

ũi =
∑

j

√
h̄/2ω j

(M j i A j + M∗
j i A†

j

)
(16)

p̃i =
∑

j

i
√

h̄ω j/2
(−M j i A j + M∗

j i A†
j

)
. (17)

The unperturbed phonon Hamiltonian may now be written in diagonal form as

Hz =
∑

j

(
A j A†

j + A†
j A j

)
h̄ω j/2. (18)

We now give every mode j a degree of thermal excitation, defined by the quantity

N j = 〈A†
j A j〉 (19)

where the angular brackets designate thermal averaging. The electron–phonon interaction
in equations (5) and (10) is then switched on. First-order perturbation theory then leads to
two kinds of process. In one, electrons absorb phonons, and in the other, electrons generate
phonons. Consider processes in which a single quantum is absorbed out of phonon mode j .
The total rate of such processes, within first-order perturbation theory, is [21]

J −
j = (4π/h̄)N j

∑
α,β=1,2

fα(1 − fβ)|〈ψβ |
 j |ψα〉|2δ(Eβ − Eα − h̄ω j )

= (4π/h̄)N j

∑
α,β=1,2

∫
dE fα(E)[1 − fβ(E + h̄ω j)]

× Tr[Dα(E)

†
j Dβ(E + h̄ω j )
 j ] (20)

where a factor of 2 for electron spin degeneracy has been included and


 j =
∑

i

√
h̄/2Miω jM j i Vi , 


†
j =

∑
i

√
h̄/2Miω jM∗

j i Vi . (21)

Here, we have used the notation i ≡ nν, introduced earlier, so that Vi is the same as Vnν in
equation (5). Similarly, the total rate of processes in which a quantum is created in phonon
mode j is [21]

J +
j = (4π/h̄)(N j + 1)

∑
α,β=1,2

fα(1 − fβ)|〈ψβ |
†
j |ψα〉|2δ(Eβ − Eα + h̄ω j )

= (4π/h̄)(N j + 1)
∑

α,β=1,2

∫
dE fα(E)[1 − fβ(E − h̄ω j )]

× Tr[Dα(E)
 j Dβ(E − h̄ω j )

†
j ]. (22)

The ‘1’ in the term (N j + 1) above corresponds to spontaneous phonon emission and is
particularly important in the low-temperature limit, N j → 0. We will return to this point, and
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its significance for inelastic current–voltage spectroscopy, later in the paper. The fermionic
occupation numbers fα and fβ take care of the Pauli exclusion principle and arise naturally if
second quantization is used [18].

The power into phonon mode j is then given by

w j = h̄ω j J +
j − h̄ω j J −

j

= 2π h̄(N j + 1)
∑

α,β=1,2

∑
i,i ′

M j iM∗
j i ′√

Mi Mi ′

∫
dE fα(E)[1 − fβ(E − h̄ω j )]

× Tr[Dα(E)Vi Dβ(E − h̄ω j)Vi ′ ]

− 2π h̄ N j

∑
α,β=1,2

∑
i,i ′

M∗
j iM j i ′√
Mi Mi ′

∫
dE fα(E)[1 − fβ(E + h̄ω j )]

× Tr[Dα(E)Vi Dβ(E + h̄ω j )Vi ′]. (23)

Electron coupling to full phonon modes was used in [20], in a density-functional framework,
to study local heating in molecular junctions.

As mentioned above, we can choose M to be real, so that M∗
j i = M j i . We may then

obtain the following useful approximate expression for w j . First, let us ignore any variation
in the electron Green functions over energies of the order of h̄ω j , enabling us to neglect h̄ω j

in the energy arguments of Dα and Dβ above. Second, let us assume that we are in the linear
voltage regime, where the electron Green functions do not vary significantly over the energy
window for conduction, between µ2 and µ1 = µ2 + eW . Finally, let |eW | > h̄ω j . Then,
equation (23) reduces to

w j ≈ −2π h̄E j(T
j

11 + 2T j
12 + T j

22) + 2π h̄(|eW | − h̄ω j )T
j

12 (24)

where E j = N j h̄ω j and

T j
αβ =

∑
i,i ′

M j iM j i ′√
Mi Mi ′

Tr[DαVi DβVi ′] (25)

with Dα and Dβ evaluated at the Fermi energy, at zero bias.

2.3. Power into Einstein oscillators

We will now consider electron–phonon scattering and power dissipation, treating the atomic
vibrations in a physically very different way. We now imagine that each degree of freedom, ν,
of each atom, n, is a separate, independent Einstein oscillator, with an environment-dependent
angular frequency, ωnν , given by

ω2
nν = Knνnν/Mn . (26)

To describe power dissipation into these Einstein oscillators, we may now use the results from
the previous subsection, with K replaced by the diagonal matrix KEO with matrix elements

K EO
nνmµ = δnmδνµKnνnν . (27)

The corresponding matrix, MEO, of eigenvectors of KEO, is also diagonal. The power into
Einstein oscillator nν is given by the following analogue of equation (23) [19]:

wEO
nν = (2π h̄/Mn)(N

EO
nν + 1)

∑
α,β=1,2

∫
dE fα(E)[1 − fβ(E − h̄ωnν)]

× Tr[Dα(E)VnνDβ(E − h̄ωnν)Vnν]

− (2π h̄/Mn)N
EO
nν

∑
α,β=1,2

∫
dE fα(E)[1 − fβ(E + h̄ωnν)]

× Tr[Dα(E)VnνDβ(E + h̄ωnν)Vnν]. (28)
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Here

NEO
nν = 〈a†

nνanν〉 (29)

is the average number of excitation quanta in Einstein mode nν, with anν = (pnν −
iMnωnνunν)/

√
2Mnh̄ωnν . Under the assumptions leading to equation (24), equation (28)

simplifies to

wEO
nν ≈ −2π h̄ Enν(T

nν
11 + 2T nν

12 + T nν
22 ) + 2π h̄(|eW | − h̄ωnν)T

nν
12 (30)

where Enν = NEO
nν h̄ωnν and

T nν
αβ = (1/Mn)Tr[DαVnνDβVnν]. (31)

2.4. The equivalence between the two power formulae

We will now show that, under a broad range of conditions, the full-mode picture of
subsection 2.2 and the Einstein picture of subsection 2.3 give the same net power dissipation
at any given atom in the system. First, we need to reinterpret the full-mode power formula in
equation (23) as follows.

Using (23), the total power, w, dissipated in the junction may be written as

w =
∑

j

w j =
∑

i

w
proj
i (32)

where

w
proj
i = 2π h̄

∑
j,i ′
(N j + 1)

∑
α,β=1,2

M j iM∗
j i ′√

Mi Mi ′

∫
dE fα(E)[1 − fβ(E − h̄ω j )]

× Tr[Dα(E)Vi Dβ(E − h̄ω j)Vi ′ ]

− 2π h̄
∑
j,i ′

N j

∑
α,β=1,2

M∗
j iM j i ′√
Mi Mi ′

∫
dE fα(E)[1 − fβ(E + h̄ω j )]

× Tr[Dα(E)Vi Dβ(E + h̄ω j )Vi ′]. (33)

In the above, index j runs over all full phonon modes of the junction, and indices i = nν and
i ′ = n′ν ′ each run over all individual atomic degrees of freedom. The quantity wproj

i is a sum
of projected contributions, at atomic degree of freedom i , of the power dissipated into each full
mode j . It is natural to interpretwproj

i as the effective net power collected by atomic degree of
freedom i . This interpretation may be put on a more rigorous footing as follows. Let

ŵ = (1/ih̄)[Hz, H ] = (1/ih̄)[Hz, Vez]. (34)

Here, Hz is the full phonon Hamiltonian in equation (3), and H = He + Vez + Hz is the
Hamiltonian for the coupled electron–phonon system, where Vez is given by equation (5) and
He is the (possibly self-consistent) Hamiltonian for the unperturbed electron system. The
quantity ŵ is the operator that represents the total power dissipated in the junction. Using the
phonon position–momentum commutation relations we may now write ŵ as

ŵ =
∑

i

ŵi , ŵi = (1/ih̄)[p2
i /2Mi , Vez] = −Vi pi/Mi (35)

where, once again, i ≡ nν labels a particular atomic degree of freedom. We interpret the
quantity ŵi as an operator that represents the power dissipated by the current-carryingelectrons
into atomic degree of freedom i . If now we evaluate the expectation of ŵi , within first-order
time-dependent perturbation theory, we arrive at equation (33).
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We will now show that, under certain conditions, wproj
i , with i = nν in equation (33),

is essentially the same as wnν in equation (28). We choose M j i in equation (33) to be real,
M j i = M∗

j i , as we did earlier, in deriving equation (24). We now make the following
approximations. First, we assume that the electron Green functions, and the operators D1 and
D2, do not vary appreciably over energies of the order of h̄ω, where ω is a typical phonon
frequency. We made the same approximation earlier, in deriving equations (24) and (30).
This approximation would be well obeyed, for example, in simple metallic nanocontacts and
atomic wires, where h̄ω is typically of the order of tens of milli-electronvolts, whereas electron
densities of states vary typically on the scale of an electronvolt. An example of a situation where
this approximation may break down, on the other hand, is resonant transmission through very
narrow quasibound states. If we do make the above approximation, then we may ignore h̄ω j

in the energy arguments of Dα and Dβ in equation (33). Then the N j -dependent contributions
from the energy integrals in the two terms in that equation largely cancel out. That cancellation
may be made complete by our next approximation. Referring back to figure 1, in the steady
state, power in equals power out. If we assume that heat is carried out of the junction by normal
harmonic lattice heat conduction into the adjoining electrodes, then the characteristic steady-
state lattice temperature in the junction may be expected to remain sufficiently low to keep
E j 
 |eW | in equation (24) and Enν 
 |eW | in equation (30) [18, 20]. For example, for simple
metallic atomic-scale contacts, theoretical estimates predict a steady-state local temperature
of the order of 100 K at voltages of the order of a volt (at zero ambient temperature) [18, 20].
Under such conditions, we may ignore the first term in equation (24) and the first term in
equation (30). Provided that |eW | � h̄ω, we may, furthermore, replace (|eW | − h̄ω j ) by
|eW | in equation (24), and (|eW | − h̄ωnν) by |eW | in equation (30). These approximations
are equivalent to neglecting h̄ω j in the energy arguments of the electron occupation functions
fα and fβ in equation (33). If we do that, then the N j -dependent terms in that equation cancel
out completely. Assuming for definiteness µ1 − µ2 = eW > 0, this leaves

w
proj
i ≈ 2π h̄

∑
j,i ′

M j iM j i ′√
Mi Mi ′

∫ µ1

µ2

dE Tr[D1(E)Vi D2(E)Vi ′]. (36)

But M is unitary and, if it is real, it is orthogonal. Hence∑
j

M j iM j i ′ = δii ′ (37)

and therefore

w
proj
i=nν ≈ (2π h̄/Mn)

∫ µ1

µ2

dE Tr[D1(E)VnνD2(E)Vnν]. (38)

We may now apply the same approximations as those leading to equation (36) above to
equation (28) for the power per degree of freedom nν in the Einstein picture. If we do that,
then equation (28) reduces to precisely the same expression as in equation (38) above, and thus

wEO
nν ≈ w

proj
i=nν ≈ result in equation (28). (39)

In the linear voltage regime, they both reduce further to

wEO
nν ≈ w

proj
i=nν ≈ 2π h̄|eW |T nν

12 (40)

which is equation (30) with Enν and h̄ωnν neglected, in accordance with the assumptions above.

3. Results

In this section, we will test the equivalence of the two power formulae for a specific model
system. We will then consider the differences between the full-mode picture and the Einstein-
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Figure 2. A model conducting structure between two simple-cubic 2 × 2-atom leads (only the
surface layer of each lead is shown). The upper semicircle represents the power into the respective
atom calculated from equation (33). The lower semicircle represents the power into the atom
calculated from equation (28). The power is proportional to the radius of the circle. The largest
circle on the plot corresponds to a power of 0.0145 eV ps−1. The voltage is eW = µ1−µ2 = 0.4 eV.
The Fermi level at zero voltage is at EF = (µ1 + µ2)/2 = −2.4 eV, with the centre of the band
chosen as the zero of energy.

oscillator picture away from the range of validity of equation (39). As an illustration, we will
calculate the inelastic current–voltage characteristics of model one-dimensional atomic wires.

3.1. A comparison of the two power formulae

The purpose of the numerical calculations below is purely illustrative. We have therefore
selected the simplest possible electronic model that allows an electron to be coupled to atomic
motion, namely a nearest-neighbour tight-binding model with a single positional basis state,
|n〉, at each atom, n, in the system. The electron Hamiltonian then is

He =
∑
m,n

|m〉Hmn〈n|. (41)

In the present calculations, the hopping integrals, Hmn = Hnm for n,m = nearest neighbours,
are all the same, and equal to γ < 0. γ is a parameter of the model and is here set to |γ | = 1
eV. The operator Vnν in equation (5) takes the form [19, 21]

Vnν =
∑
m �=n

(|n〉〈m| + |m〉〈n|)∂Hnm/∂Rnν . (42)

Here Rn = (Rnx , Rny, Rnz) is the position of atom n, and the derivatives in equation (42) are
evaluated at the equilibrium positions of the atoms. Thus, ∂Hnm/∂Rnν is non-zero only if m
is a nearest neighbour of n, in which case

∂Hnm/∂Rnν = (R̂nm)νγ
′ (43)

where γ ′ is the derivative of the nearest-neighbour hopping integral with respect to interatomic
distance, and is a parameter of the model. Here, we set |γ ′| = 1 eV Å−1. (R̂nm)ν above is
component ν of the unit vector R̂nm = (Rn − Rm)/|Rn − Rm|. No self-consistency is present
in the model. The density of states operators D1 and D2 are calculated by the Green function
method described in [19].

We now consider the system shown in figure 2. To describe phonon modes within the
five-atom structure between the two 2 × 2-atom leads, we associate a simple harmonic spring
with each bond shown in the figure. Assuming that each spring is relaxed, the matrix elements
of the dynamical response matrix are given by

Knνmµ =




−(R̂nm)νknm(R̂nm)µ for n �= m∑
l �=n

(R̂nl)νknl(R̂nl)µ for n = m (44)
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where knm = kmn is the spring constant between atoms n and m. In the present example, all
nearest-neighbour spring constants are set equal to 7 eV Å−2. All atomic masses are taken to
be the same, Mn = M , with M set equal to the atomic mass of Au. All on-site energies Hnn

are set equal to zero.
We now test equation (39) by comparing the power into each atom in the junction,

computed directly from equation (28) and from equation (33). The results are shown in figure 2.
In each case, the contributions from the three degrees of freedom, ν = x, y, z, have been added
up for each atom, n, in the junction. To assign values to the phonon occupation numbers NEO

nν
in equation (28) and N j in equation (33), we have assumed a nominal junction temperature
of 232 K, somewhat higher than the expected steady-state temperature for a simple metallic
nanojunction at the given voltage (at zero ambient temperature) [18, 23], but still within the
range of validity of the assumptions of subsection 2.4. NEO

nν and N j are then taken as the
Bose–Einstein occupation numbers, corresponding to the phonon angular frequenciesωnν and
ω j , respectively. We see that, if anything, equations (28) and (33) for this system agree even
more closely than one might have expected from the seemingly long series of approximations
leading to equation (39).

3.2. The differences between the two pictures of atomic vibrations

The practical usefulness of equation (39)—within its range of validity—is that it allows rigorous
estimates of local power dissipation based on the much simpler Einstein-oscillator picture. Let
us now consider the difference between the full-mode picture of vibrations and the Einstein
picture, away from the range of validity of equation (39). A key limit, where this difference
is significant, is that of low temperatures and low voltages, with |eW | comparable to h̄ω j

for individual phonon modes. In that limit, electron–phonon scattering is controlled by the
detailed phonon spectrum {ω j }, and the full-mode picture is essential. As an illustration, we
consider the example of point-contact spectroscopy, in which the low-temperature, low-bias
inelastic current–voltage characteristics of a nanoscale junction are used as a probe into the
phonon spectrum of the junction (see [21] and further references therein).

We go back to the full-mode picture of subsection 2.2, and take the limit of very low lattice
temperature in the junction. This eliminates the quantity N j in equations (20) and (22). The
only remaining electron–phonon process is that due to the term arising from the ‘1’ in (N j + 1)
in equation (22). This process is, once again, spontaneous emission of phonons, accompanied
by the scattering of an incoming electron into a lower energy state. To satisfy simultaneously
the Pauli exclusion principle and energy conservation, this means that for electrons to begin
to excite a given phonon mode j , they need an excess energy of at least h̄ω j . This in turn
requires |eW | > h̄ω j . If then we turn the corresponding electron–phonon scattering rate into
a backscattered current, and compute the resultant decrease in conductance, in the limit of
quasiballistic junctions the inelastic differential conductance may be written as [21]

σ = σ0 − (e2/π h̄)
∑

j

4π2θ(|eW | − h̄ω j )Tr[D1
 j D2

†
j ] (45)

where D1 and D2 are evaluated at the Fermi energy, at zero bias, and σ0 is the elastic zero-bias
conductance. The step function θ , defined by θ(x) = 0 for x < 0, θ(x) = 1 otherwise, reflects
the behaviour discussed above: spontaneous excitation of phonon mode j is switched on as
|eW | exceeds h̄ω j . Thus, a plot of σ versus W constitutes a map of the phonon spectrum.

Montgomery et al [21] studied the inelastic current–voltage characteristics of defect-
free metallic atomic chains between two electrodes. It was found that the self-consistent
bonding of the chain to the contacts results in a pattern of weak and strong bonds near each
chain end. This in turn results in the appearance of localized phonon modes near each chain
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Figure 3. The zero-voltage elastic conductance (panel 2) as a function of Fermi energy of a 7-atom
(solid curve) and a 17-atom (dashed curve) chain, with a light atom bonded to the centre atom in
each case. The geometries are shown in panel 1.

end, which dominate the inelastic current–voltage spectrum for moderate chain lengths. In
a sufficiently long one-dimensional conductor, on the other hand, one may expect electron–
phonon interactions to be controlled by extended phonon modes, under the requirement of
total momentum conservation [11, 12]. Here, we investigate this crossover in one-dimensional
conductors with localized modes of a different origin.

Localized, bound phonons can develop in low-dimensional structures in a variety of
situations. For example, an infinite linear chain of identical harmonic springs, with a single
spring that is stronger than the rest, may be shown analytically to contain a true bound
vibrational mode at the strong bond, with a frequency above the continuous band due to
extended phonons. Another example is a linear atomic chain with one atom that has a smaller
mass than the rest, in which case a bound phonon mode develops at the light atom. A third
example is shown in the top panel of figure 3: a linear chain between two electrodes, with a
single light adatom bonded to the chain. As we will see below, there is a localized phonon
mode at the adatom, which can give rise to substantial electron–phonon scattering.

The two chains in figure 3 are of length 7 and 17 atoms, attached to 3 × 3-atom simple-
cubic leads. In each case, all atomic masses have been set equal to that of atomic Au, except for
the adatom, whose mass is 10% of this value. The simple tight-binding model described above
is employed to bond the nearest neighbours of the system. The nearest-neighbour hopping
integral and its derivative are once again assigned values of magnitude 1 eV and 1 eV Å−1,
respectively. Nearest neighbours within the chain, and between the chain and the electrodes,
are considered linked by relaxed harmonic springs of spring constant 7 eV Å−2, as before. All
on-site energies are the same and set equal to zero, except that for the adatom which is set to
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Figure 4. The inelastic differential conductance as a function of voltage for the 7-atom (solid line)
and 17-atom (dashed line) geometries shown in panel 1 of figure 3.

−0.75 eV. The band for the perfect linear chain with the present parameters extends from −2
to 2 eV. The zero-voltage elastic conductance plots in figure 3 show that the presence of the
adatom results in an antiresonance, at a Fermi energy equal to the on-site energy of the adatom.

The inelastic current–voltage spectra of these systems are now calculated with
equation (45). The calculations use a single value for the Fermi energy, indicated by the vertical
dotted curve in the conductance plot in figure 3 and chosen to give a similar and relatively high
zero-bias conductance for each geometry. Figure 4 shows the inelastic differential conductance
as a function of voltage for the two systems. The major features are labelled. A large inelastic
conductance drop corresponds to a large electronic coupling to a particular phonon mode. The
phonon modes that give rise to the dominant features in figure 4 are shown in figure 5 (for the
7-atom chain) and figure 6 (for the 17-atom chain).

The inelastic conductance of the 7-atom chain shows two dominant features, labelled
as 7(a) and 7(b) in figure 4. Figure 5 shows that the phonon mode responsible for feature 7(a)
is a localized, trapped vibration, involving the light adatom and its nearest neighbour within
the chain. The mode responsible for feature 7(b), by contrast, is an extended mode in the chain.
The physics of the coupling of electrons to these two modes is rather different. The chief factor
that determines the strength of the coupling of electrons to the trapped mode is the mass of
the light adatom. Due to the mass-dependent denominators in equation (21), the lighter the
adatom, the larger the value of the term in equation (45) for the trapped mode. The extended
mode responsible for feature 7(b), on the other hand, is a conventional extended longitudinal
vibration in the chain. The cause of its strong coupling to the electrons may be seen in its
wavelength, of about 2 bondlengths. At the present Fermi energy the electron wavelength is
about 4.5 bondlengths. Momentum-conserving scattering of electrons of wavevector k and
longitudinal phonons of wavevector q requires 2k = q [11, 12]. This suggests that feature
7(b) is due to such momentum-conserving scattering. In the present short chain, however, the
trapped mode dominates the scattering of electrons.

Imagine now making the chain longer. The coupling of electrons to the trapped phonon
mode will remain largely the same, as the physics of that mode does not change. However, as
the chain gets longer, both electron and phonon momentum within the chain become better and
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7(a)
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Figure 5. The phonon modes giving rise to the two largest conductance drops for the 7-atom chain,
as labelled in figure 4. The arrows, by their length and direction, indicate the relative displacement
of each atom in that mode.

better quantum numbers. Therefore, the momentum-conservationselection rule 2k = q above,
for electron coupling to longitudinal extended modes, will becomes stronger and stronger.
This may be seen in the inelastic current–voltage spectrum of the 17-atom chain in figure 4.
The plot is dominated by an avalanche of features—17(a), 17(b) and 17(c)—all of which
correspond to longitudinal phonons, as seen in figure 6. The modes for the dominant features,
17(a) and 17(b), have wavelengths that closely match the condition 2k = q . The conductance
feature due to the trapped mode involving the light atom, 17(d), now pales into insignificance.
Thus, in the long chain, momentum conservation dominates the electron–phonon scattering.

4. Discussion and summary

The goal of this paper is to compare electron–phonon interactions in two extreme pictures
of atomic vibrations in nanoscale junctions: full phonon modes versus independent atomic
Einstein oscillators. If ω is a typical phonon frequency in the junction and T is the junction
temperature, we have shown analytically that in the limit of large voltages, |eW | � h̄ω, and
low lattice temperatures, kT 
 |eW |, the two pictures produce essentially the same power
at a given atom in the nanojunction, subject to the additional requirement that electronic
properties do not vary appreciably over energies of the order of h̄ω. This equivalence turns
the computationally and conceptually much simpler Einstein-oscillator picture into a rigorous
framework for the calculation of local power dissipation at individual atoms in a nanojunction.
This, in turn, makes it possible to identify individual atoms with a greatly enhanced local
power [19]. This knowledge is of key importance in addressing the problem of how current
flow limits the stability of atomic-scale conductors.
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Figure 6. The phonon modes responsible for the largest conductance drops for the 17-atom chain.
The labelling of modes is from figure 4.

The full-phonon picture becomes necessary in the limit of low lattice temperatures and
low voltages, where electron–phonon scattering is dominated by the detailed structure of the
phonon spectrum, as illustrated by the calculations of inelastic current–voltage characteristics
presented above. Another situation, in which the equivalence of the two pictures is lost, is
the limit of high lattice temperatures, where kT is comparable to eW . Then the first term
in equation (24) and in equation (30) may no longer be negligible compared with the second
term; it is no longer possible to neglect h̄ω j in the energy arguments of the electron occupation
functions fα and fβ in equation (33), and the algebra leading to equation (39) breaks down.
That may occur, for example, in the atomic chains with the light adatom in figure 3. We
saw that the adatom gives rise to a trapped localized vibrational mode that couples well to
the electrons. Within the harmonic limit, this mode cannot couple to modes in the adjoining
electrodes. Hence, there is no mechanism for heat dissipated by the electrons into the trapped
mode to be conducted out. In the steady state, equation (24) then sets the thermal energy of
that mode to

E j ≈ (|eW | − h̄ω j )T
j

12/(T
j

11 + 2T j
12 + T j

22), j = trapped. (46)

In the present case, as a result of the special symmetries of the system, in the limit |eW | � h̄ω j ,
this gives E j ≈ |eW |/4. Thus, at W = 0.4 V, in the harmonic approximation, our trapped
mode would be excited to an effective temperature of the order of 1000 K. We have seen that
such trapped modes can develop easily in low-dimensional structures. In addition to their role
in shaping current–voltage spectra, discussed earlier, localized vibrational modes are likely to
act as centres for particularly high local heating and thereby play a particularly important role
in limiting the stability of such structures under current flow.
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In reality, anharmonicity and electron-mediated phonon–phonon processes would
somewhat reduce the temperature of trapped modes below the above estimate, which is to
be treated as an upper bound. The analysis of such processes extends beyond the scope of this
paper, but, in conclusion, we will pursue the question just one step further. In the lowest-order
perturbation theory, considered in this paper, electrons can only ever do one of two things—
create a phonon in a given mode, or annihilate one—as reflected by equations (20) and (22).
What they cannot do is take an existing phonon and scatter it into a shower of other phonons.
Such processes may be studied rigorously by higher-order perturbation theory. However, the
Einstein picture above, although it is still a first-order picture, may provide a step in that
direction, in the following sense. The lowest-order treatment may be expected to remain valid
up to voltages at which the typical lifetime of a phonon due to phonon–electron scattering
becomes comparable to a thermal period. In the limit of large W , the phonon lifetime, τ j ,
against absorption by the electrons may be estimated from equation (20) as

1/τ j = (4π/h̄)|eW | Tr[D1

†
j D2
 j ]. (47)

For an Einstein oscillator with a mass of 100 amu and with h̄ω = 0.02 eV, in a metallic chain
under a bias of the order of a volt,τ is of the order of 0.5 ps. At such voltages, extended phonons
stop being good quantum numbers: extended vibrations simply do not have time to develop, in
between scattering events involving the electrons. Under these conditions, the Einstein picture
may be, physically, the better picture. However, as stated above, the high-voltage limit calls
for higher-order perturbation theory, or for altogether non-perturbative methods.
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